High-speed trains, called maglev trains.
Maglev is short for magnetic levitation, which means that these trains will float over a guideway using the basic principles of magnets to replace the old steel wheel and track trains.
Electromagnetic Suspension (EMS)
In Magnet opposite poles attract and like poles repel each other. This is the basic principle behind electromagnetic propulsion. Electromagnets are similar to other magnets in that they attract metal objects, but the magnetic pull is temporary.
There are three components to this system:
- A large electrical power source
- Metal coils lining a guideway or track
- Large guidance magnets attached to the underside of the train
The big difference between a maglev train and a conventional train is that maglev trains do not have a typical engine. The magnetic field created by the electrified coils in the guideway walls and the track combine to propel the train.
The Maglev Track
The magnetized coil running along the track, called a guideway, repels the large magnets on the train's undercarriage, allowing the train to levitate between 0.39 and 3.93 inches (1 to 10 cm) above the guideway. Once the train is levitated, power is supplied to the coils within the guideway walls to create a unique system of magnetic fields that pull and push the train along the guideway. The electric current supplied to the coils in the guideway walls is constantly alternating to change the polarity of the magnetized coils. This change in polarity causes the magnetic field in front of the train to pull the vehicle forward, while the magnetic field behind the train adds more forward thrust.
Maglev trains float on a cushion of air, eliminating friction. This lack of friction and the trains' aerodynamic designs allow these trains to reach unprecedented ground transportation speeds of more than 310 mph(500 kph), or twice as fast as Amtrak's fastest commuter train. In comparison, a Boeing-777 commercial airplane used for long-range flights can reach a top speed of about 562 mph (905 kph). Developers say that maglev trains will eventually link cities that are up to 1,000 miles (1,609 km) apart. At 310 mph, you could travel from Paris to Rome in just over two hours.
Germany and Japan are both developing maglev train technology, and both are currently testing prototypes of their trains. (The German company "Transrapid International" also has a train in commercial use ) Although based on similar concepts, the German and Japanese trains have distinct differences.
In Germany, engineers have developed an electromagnetic suspension (EMS) system, called Transrapid. In this system, the bottom of the train wraps around a steel guideway. Electromagnets attached to the train's undercarriage are directed up toward the guideway, which levitates the train about 1/3 of an inch (1 cm) above the guideway and keeps the train levitated even when it's not moving. Other guidance magnets embedded in the train's body keep it stable during travel. Germany has demonstrated that the Transrapid maglev train can reach 300 mph with people onboard.
In Germany, engineers have developed an electromagnetic suspension (EMS) system, called Transrapid. In this system, the bottom of the train wraps around a steel guideway. Electromagnets attached to the train's undercarriage are directed up toward the guideway, which levitates the train about 1/3 of an inch (1 cm) above the guideway and keeps the train levitated even when it's not moving. Other guidance magnets embedded in the train's body keep it stable during travel. Germany has demonstrated that the Transrapid maglev train can reach 300 mph with people onboard.
Electrodynamic Suspension (EDS)
Japanese engineers are developing a competing version of maglev trains that use an electrodynamic suspension(EDS) system, which is based on the repelling force of magnets. The key difference between Japanese and German maglev trains is that the Japanese trains use super-cooled, superconducting electromagnets. This kind of electromagnet can conduct electricity even after the power supply has been shut off. In the EMS system, which uses standard electromagnets, the coils only conduct electricity when a power supply is present. By chilling the coils at frigid temperatures, Japan's system saves energy.However, the cryogenic system uses to cool the coils can be expensive.
Another difference between the systems is that the Japanese trains levitate nearly 4 inches (10 cm) above the guideway. One potential drawback in using the EDS system is that maglev trains must roll on rubber tires until they reach a liftoff speed of about 62 mph (100 kph). Japanese engineers say the wheels are an advantage if a power failure caused a shutdown of the system.
The Inductrack is a newer type of EDS that uses permanent room-temperature magnets to produce the magnetic fields instead of powered electromagnets or cooled superconducting magnets. Inductrack uses a power source to accelerate the train only until begins to levitate. If the power fails, the train can slow down gradually and stop on its auxillary wheels.
The track is actually an array of electrically-shorted circuits containing insulated wire. In one design, these circuits are aligned like rungs in a ladder. As the train moves, a magnetic field the repels the magnets, causing the train to levitate.
Source: http://science.howstuffworks.com/transport/engines-equipment/maglev-train2.htm
No comments:
Post a Comment